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ABSTRACT

The accuracy of the Distribution Derivative Method (DDM) [1]
is evaluated on mixtures of chirp signals. It is shown that accurate
estimation can be obtained when the sets of atoms for which the in-
ner product is large are disjoint. This amounts to designing atoms
with windows whose Fourier transform exhibits low sidelobes but
which are once-differentiable in the time-domain. A technique for
designing once-differentiable approximations to windows is pre-
sented and the accuracy of these windows in estimating the pa-
rameters of sinusoidal chirps in mixture is evaluated.

1. INTRODUCTION

Additive synthesis using a sum of sinusoids plus noise is a pow-
erful model for representing audio [2], allowing for the easy im-
plementation of many manipulations such as time-stretching [3]
and timbre-morphing [4]. In these papers, [2—4] the phase evolu-
tion of the sinusoid is assumed linear over the analysis frame, only
the phase and frequency of the sinusoids at these analysis points
are used to fit a plausible phase function after some the analysis
points are connected to form a partial [5]. Recently, there has been
interest in using higher-order phase functions [6] as the estima-
tion of their parameters has been made possible by a new set of
techniques of only moderate computational complexity using sig-
nal derivatives [7]. The use of higher-order phase models allows
for accurate description of highly modulated signals, for example
in the analysis of birdsong [8]. The frequency modulation infor-
mation has also been used in the regularization of mathematical
programs for audio source separation [9].

The sinusoidal model approximating signal s typically consid-

ered is
Q

5(t) = exp(ao + » _ aqt?) +n(t) 1)
q=1

where § is the approximating signal, ¢ the variable of time, the
aq € C coefficients of the argument’s polynomial, and 7(t) white
Gaussian noise. Although this technique can be extended to de-
scribe a single sinusoid of arbitrary complexity simply by increas-
ing @, it remains essential to consider signals featuring a sum of
P such components, whether they represent the harmonic structure
of a musical sound or the union of partials resulting from a mixture
of multiple signal sources (e.g., recordings of multiple speakers or
performers), i.e.,

z(t) =D wp(t) +n(t) 2)
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with
Q
zp(t) = exp(ap,0 + Z ap.qt?) 3

q=1

As regards the design and evaluation of signal-derivatives analysis
techniques, previous work has generally assumed signals contain-
ing a single component, i.e., P = 1 or assumed the influence of
other components to be negligible. Later we will refine when this
assumption can be made. In [10] the authors provide a comprehen-
sive evaluation of various signal-derivatives analysis methods ap-
plied to a single-component signal. In [11] the extent to which two
components in mixture can corrupt estimations of the frequency
slope (S{ao,2} and S{a1,2}) is investigated in the context of the
reassignment method, one of the signal-derivatives techniques, but
the corruption of the other parameters is not considered.

In this paper, we revisit the quality of signal-derivatives esti-
mation of all the a; when analyzing a mixture of components. We
focus on the DDM [1] analysis method for its convenience as it can
simply be considered as an atomic decomposition (see Sec. 2), and
does not require computing derivatives of the signal to be analysed.

The DDM does, however, require a once-differentiable analy-
sis window. As we are interested in windows with lower sidelobes
in order to better estimate parameters of sinusoidal chirp signals
in mixture, we seek windows that combine these two properties.
For this, a technique to design once-differentiable approximations
to arbitrary symmetrical windows is proposed and presented along
with a design example for a high-performance window. Finally we
evaluate the performance of various once-differentiable windows
in estimating the parameters a,.

2. ESTIMATING THE PARAMETERS ¢,

We will now show briefly how the DDM can be used to estimate

the a,. Based on the theory of distributions [12], the DDM makes

use of “test functions” or atoms 1. These atoms must be once

differentiable with rele)ect Lto time variable ¢ and be non-zero only
t t

on a finite interval [— 3, St]. First, we define the inner product

@)= [ T a0yB(ndt @

and the operator
T (T2)(t) = t%x(¢) (5)
Consider the weighted signal

f(t) =z(t)p(t) (6)
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differentiating with respect to ¢ we obtain

df dz

I (1) = S0 + 20 () =

B e @
(anqt ) P+ 5O @)

Because ¢ is zero outside of the interval Ly =t], integrating

E(t) we obtain
daf
/- dt() -
qaq /7 e

or, using the operator 7,

Q —
-1 = d
;qaq (T ") = - <x dif> ©

2 )

()dt+< %>:0 8)

Estimating coefficients aq, 1 < ¢ < @, simply requires R atoms
¥, with R > (@ to solve the linear system of equations

dyp,
—<, dt> (10)
forl <r <R.

To estimate ap we rewrite the signal we are analysing as

Q —
Z qaq <T(1—1x7 wr> =
q=1

2(t) = exp(ao)y(t) + (t) (1

where €(t) is the error signal, the part of the signal that is not
explained by our model, and «(¢) is the part of the signal whose
coefficients have already been estimated, i.e.,

Q
t) = exp <Z aqtq> (12)
q=1

Computing the inner product (z, ), we have

(z,7) = {exp(ao)y,”) + (67) (13)
The inner product between € and -y is 0, by the orthogonality prin-
ciple [13, ch. 12]. Furthermore, because exp(ao) does not depend
on t, we have

(,7) = exp(ao) (v, 7) (14)

SO we can estimate ag as

ao = log ((z,7)) —

As will be seen in subsequent sections, the DDM typically in-
volves taking the discrete Fourier transform (DFT) of the signal
windowed by both an everywhere once-differentiable function of
finite support (e.g., the Hann window) and this function’s deriva-
tive. A small subset of atoms corresponding to the peak bins in the
DFT are used in Eq. 10 to solve for the parameters a,.

log ({v,7)) (15)

3. ESTIMATING THE a,, , OF P COMPONENTS

We examine how the mixture model influences the estimation of
the ap 4 in Eq. 3. Consider a mixture of P components. If we
define the weighted signal sum

)= zp()(t) = folt) (16)

and substitute g for f in Eq. 7 we obtain

Z/J dfp oo
Z(an“ (7" wp,¢>+<%70§f>> (17)

p=1

From this we see if (79 "a;, 1, ) and <mp7 d:ft > are small for

all but p = p* and a subset of R atoms!
the parameters a,« 4 using

Q pa—
L d
;qap*,q (11 1wp*,wr>=—<xp*,—${> (18)

for 1 < r < R. To compute ap+,o we simply use

Q
Yp+ (£) = exp <Z ap*,qtq> (19)
q=1

in place of «y in Eq. 15.

, we can simply estimate

4. DESIGNING THE v¢r

In practice, an approximation of Eq. 4 is evaluated using the DFT
on a signal x that is properly sampled and so can be evaluated at a
finite number of times nT" with n € [0, N — 1] and T the sample
period in seconds. In this way, the chosen atoms 1), (t) are the
products of the elements of the Fourier basis and an appropriately
chosen window w that is once differentiable and finite, i.e.,

Yu(t) = w(t) exp(—jwi) (20)

Defining N = % and angular frequency at bin r as w, = 27,
the approximate inner product is then
N-1 n
W) A T T —2mjr— 21
(x, ) "2:% z(Tn)w(Tn) exp( WJTN) 20

i.e., the definition of the DFT of a windowed signal>. The DFT
is readily interpreted as a bank of bandpass filters centred at nor-
malized frequencies; and with frequency response described by

I'The notation z* will mean the value of the argument = maximizing or
minimizing some function.

2Notice however that this is an approximation of the inner product and
should not be interpreted as yielding the Fourier series coefficients of a
properly sampled signal x periodic in L¢. This means that other evalua-
tions of the inner product that yield more accurate results are possible. For
example the analytic solution is possible if « is assumed zero outside of
— L2’ 5 t] (the 1) are in general analytic). In this case the samples of z are
convolved with the appropriate interpolating sinc functions and the integral
of this function’s product with 1) is evaluated.
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Figure 1: Comparing the main-lobe and asymptotic power spectrum characteristics of the continuous 4-term Nuttall window, the digital
prolate window with W = 0.008, and the continuous approximation to the digital prolate window.

the Fourier transform of modulated w [14]. Therefore choosing
amounts to a filter design problem under the constraints that the
impulse response of the filter be differentiable in ¢ and finite. To
minimize the influence of all but one component, granted the com-
ponents’s energy concentrations are sufficiently separated in fre-
quency, we desire impulse responses whose magnitude response
gives maximum out-of-band rejection or equivalently, windows
whose Fourier transform exhibits the lowest sidelobes.

In all the publications reviewed on the DDM for this paper, the
window used was the Hann window which is once-differentiable
everywhere in the time-domain. In [11], a publication on the re-
assignment method, other windows than the Hann are considered
but these windows must be twice-differentiable. Nuttall [15] has
designed windows with lower sidelobes than the canonical Hann
window which are everywhere at least once-differentiable. It is
also possible to design approximations to arbitrary symmetrical
window functions using harmonically related cosines, as is dis-
cussed in the following section.

5. DIFFERENTIABLE APPROXIMATIONS TO
WINDOWS

A differentiable approximation to a symmetrical window can be
designed in a straightforward way. In [16] and [17] it is shown
how to design optimal windows of length N samples using a linear
combination of M harmonically related cosines

M-1
n n
I = bm 2rm— )R(— 22
w(n) mX::O cos( 7rmN) (N) 22)
where R is the rectangle function. This function is discontinuous
atn = iTN, and therefore not differentiable there, unless
M-1
Z bm cos(£mm) =0 (23)
m=0

Rather than design based on an optimality criterion, such as
the height of the highest sidelobe [17], a once-differentiable ap-
proximation to an existing window w is desired. To do this, we
choose the by, so that the window w’s squared approximation er-
ror to w is minimized while having ?I)(iTN) = 0, i.e. we find the
solution {b;, } to the mathematical program

N—1 M—1
e n . \2
minimize w(n) — by cos(2mrm— 24
nZ:O( (n) mZ:jO (2rm))® 24
M—1
subject to Z bm cos(mm) =0 (25)
m=0

which can be solved using constrained least-squares; a standard
numerical linear algebra routine [18, p. 585].

6. A CONTINUOUS WINDOW DESIGN EXAMPLE

As a design example we show how to create a continuous approx-
imation of a digital prolate spheroidal window.

Digital prolate spheroidal windows are a parametric approx-
imation to functions whose Fourier transform’s energy is max-
imized in a given bandwidth [19]. These can be tuned to have
extremely low sidelobes, at the expense of main-lobe width. Dif-
ferentiation of these window functions may be possible but is not
as straightforward as differentiation of the sum-of-cosine windows
above. Furthermore, the windows do not generally have end-points
equal to 0. In the following we will demonstrate how to approx-
imate a digital prolate spheroidal window with one that is every-
where at least once-differentiable.

In [20] it was shown how to construct digital prolate spher-
oidal windows under parameters N, the window length in samples,
and a parameter W choosing the (normalized) frequency range in
which the proportion of the main lobe’s energy is to be maximized.
We chose N = 512 based on the window length chosen in [1] for
ease of comparison. Its W parameter’s value was chosen by syn-
thesizing windows with W ranging between 0.005 and 0.010 at a

DAFx-210



Proceedings of the 20" International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5-9, 2017

Parameter estimation error variance in various SNR
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Figure 2: The estimation variance of random polynomial phase sinusoids averaged over K; = 1000 trials using atoms generated from
various windows. C is the Cramér-Rao lower bound, N3 and N4 are the 3- and 4-cosine-term continuous Nuttall windows, H is the Hann
window, and P35 is the continuous 5-cosine-term approximation to a digital prolate window as described in Sec. 6.

Table 1: The coefficients of the once-differentiable approximation
to a digital prolate window designed in Sec. 6.

bp = 3.128 x107!
by = 4.655x107!
b, = 1851 x107*
bs = 3.446 x1072
by = 2071 x1073

resolution of 0.001. The window with the closest 3 dB bandwidth
to the 4-term Nuttall window was obtained with W = 0.008. Its
magnitude response is shown in Fig. 1. We see that this window’s
asymptotic falloff is 6 dB per octave and therefore has a disconti-
nuity somewhere in its domain [15].

We designed an approximate window using Eq. 24 for M
varying between 2 and N/8 to find the best approximation to the

digital prolate window’s main lobe using a small number of cosines.

The M giving the best approximation was 5. The magnitude re-

sponse of the approximation is shown in Fig. 1 and its coefficients
are listed in Tab. 1; the temporal shape is very close to a digital pro-
late spheroidal window with W = 0.008 and is therefore omitted
for brevity.

It is seen that a lower highest sidelobe level than the Nuttall
and Prolate windows is obtained by slightly sacrificing the nar-
rowness of the main lobe. More importantly, in Fig. 1 we observe
that the falloft of the window is 18 dB per octave because it is
once-differentiable at all points in its domain.

7. THE PERFORMANCE OF IMPROVED WINDOWS

7.1. Signals with single component

To compare the average estimation error variance with the theo-
retical minimum given by the Cramér-Rao bound we synthesized
K random chirps using Eq. 1 with ¢ = 2 and parameters cho-
sen from uniform distributions justified in [1]. The original Hann
window, the windows proposed by Nuttall and the new digital pro-
late based window were used to synthesize the atoms as described
in Sec. 4 and their estimation error variance was compared (see
Fig. 2). After performing the DFT to obtain inner products with the
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atoms, the three atoms whose inner products were greatest were
used in the estimations, i.e., R = 3 in Eq. 10. The windows with
the lowest sidelobes only give the lowest error variance at very
favourable SNRs, at real-world SNRs the original Hann window
still performs best at estimating the parameters of a single compo-
nent signal.

Synthesize K> single-
component signals.
2
Modulate so that peak
bin is at frequency
0 for all signals.

2
—|  Setd = 0. |
2
Choose K3 (K2 — 1)
pairs of signals.

2
Scale one in each
pair to give desired
power from S and
modulate to peak
bin according to d.
v
Add each signal
pair together.

2
For each pair, try
estimating parameters
of unmodulated
component with atoms
at bins {—1,0,1}.

2
For each pair,
try estimating
parameters of
modulated component
with atoms at bins
{d—-1,d,d + 1}.

2
Sum estimation errors
of each parameter and
divide by K> (K2 —1).
2
’ Increment d by Ag. }—

]

Figure 4: The evaluation procedure for 2-component signals.

If signal power
ratios in S
remaining to
be evaluated.

Ifd<D.

7.2. Signals with 2 components

To evaluate the performance of the various windows when esti-
mating the parameters of components in mixture we synthesized
signals using Eq. 3 with P = 2 and () = 2 and parameters chosen
from the uniform distributions specified in [1]. We desired to see
how the accuracy of estimation is influenced by the difference (in
bins) between the locally maximized atoms and the difference in
signal power between the two components. To obtain a set of com-
ponents from which test signals exhibiting the desired differences

could be constructed, we synthesized a set C of K> components for
which the energy is maximized in bin 0. Test signals were obtained
by choosing a pair of unique components from this set and modu-
lating one to give the desired frequency and amplitude difference.
This was carried out as follows: the atom r* for which the inner
product was maximized was determined for each unmixed chirp
and the chirp was modulated by exp(—ZﬂT*T” j)yfor0 <n< N
in order to move this maximum to 7 = 0. Then for each desired
difference d, with 0 < d < D (for the evaluation D = 40), two
unique chirps were selected from C and one chirp was modulated
by exp(2m "Wd j) for 0 < n < N in order to give the desired dif-
ference between maxima. This component was also scaled by a
constant to give a desired signal power ratio from set S with the
other component (the power ratios S tested were 0 dB and -30 dB).
As we assume perfect peak-atom selection for this evaluation no
inner-product maximizing r* is chosen, rather atoms with angular
frequencies w = 27 for de{d—1,d,d+1} in Eq. 20 (again,
R = 3) were chosen to carry out the estimation. d was incre-
mented by Ay = 0.25 and so d was not generally integral valued
in this case. The parameters of the unmodulated component were
estimated using angular frequencies w = 271'% ford € {-1,0,1}
in Eq. 20. The squared estimation error for each parameter was
summed and divided by K> (K2 — 1) (the number of choices of
two unique components) to give the averaged squared estimation
error for each parameter at each difference d. The procedure is
summarized in Fig. 4.

The behaviour of the windows when used to analyse mixtures
of non-stationary signals is similar to the behaviour of windows
used for harmonic analysis in the stationary case [16]; here we
obtain further insight into how the estimation of each coefficient
of the polynomial in Eq. 1 is influenced by main-lobe width and
sidelobe height and slope. In Fig. 3 we see that there is generally
less estimation error for components having similar signal power.
This is to be expected as there will be less masking of the weaker
signal in these scenarios. The estimation error is large when the
atoms containing the most signal energy for each component are
not greatly separated in frequency. This is due to the convolu-
tion of the Fourier transform of the window with the signal, and
agrees with what was predicted by Eq. 17: indeed windows with a
larger main lobe exhibit a larger “radius” (bandwidth) in which the
error of the parameter estimation will be high. However, for sig-
nals where local inner-product maxima are from atoms sufficiently
separated in frequency, windows with lower sidelobes are better at
attenuating the other component and for these the estimation error
is lowest.

8. CONCLUSIONS

Motivated by the need to analyse mixtures of frequency- and am-
plitude-modulated sinusoids (Eq. 3), we have shown that the DDM
can be employed under a single-component assumption when com-
ponents have roughly disjoint sets of atoms for which their inner
products take on large values. This indicates the need for windows
whose Fourier transform exhibits low sidelobes. We developed
windows whose sidelobes are minimized while remaining every-
where once-differentiable: a requirement to generate valid atoms
for the DDM. These windows were shown to only improve param-
eter estimation of P = 1 component with argument-polynomial of
order Q = 2 in low amounts of noise. However, for P = 2 com-
ponents of the same order in mixture without noise, granted the
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components exhibited reasonable separation in frequency between
the atoms for which the inner product was maximized, these new
windows substantially improved the estimation of all but the first
argument-polynomial coefficient.

Further work should evaluate these windows on sinusoids of
different orders, i.e., @ > 1. Optimal main-lobe widths for win-
dows should be determined depending on the separation of local
maxima in the power spectrum. It should also be determined if
these windows improve the modeling of real-world acoustic sig-
nals.
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Average parameter estimation error variance for mixture of 2 components
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Figure 3: The mean squared estimation error for each parameter in an analysis of two components in mixture. A set of K> = 10 chirps
was synthesized and each unique pair used for maximum bin differences 0 < d < 40, with d varied in 0.25 bin increments. The signal
power ratio between components is indicated with colours and the corresponding ratio in decibels is indicated in the plot legend. The names
indicate the windows used to generate the atoms for estimation: N3 and N4 are the 3- and 4-cosine-term continuous Nuttall windows, H is
the Hann window, and PS5 is the continuous 5-cosine-term approximation to a digital prolate window as described in Sec. 6.
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